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Abstract. Salient Object Detection (SOD) benefits from the guidance
of global context to further enhance performance. However, most works
focus on treating the top-layer features through simple compression and
nonlinear processing as the global context, which inevitably lacks the
integrity of the object. Moreover, directly integrating multi-level features
with global context is ineffective for solving semantic dilution. Although
the global context is considered to enhance the relationship among salient
regions to reduce feature redundancy, equating high-level features with
global context often results in suboptimal performance. To address these
issues, we redefine the role of global context within the network and
propose a new method called Global-Guided Weighted Enhancement
Network (GWENet). We first design a Deep Semantic Feature Extrac-
tor (DSFE) to enlarge the receptive field of network, laying the foun-
dation for global context extraction. Secondly, we construct a Global
Perception Module (GPM) for global context modeling through pixel-
level correspondence, which employs a global sliding weighted technique
to provide the network with rich semantics and acts on each layer to
enhance SOD performance by Global Guidance Flows (GGFs). Lastly,
to effectively merge multi-level features with the global context, we intro-
duce a Comprehensive Feature Enhancement Module (CFEM) that inte-
grates all features within the module through 3D convolution, produc-
ing more robust feature maps. Extensive experiments on five challenging
benchmark datasets demonstrate that GWENet achieves state-of-the-art
results.

Keywords: Salient object detection · Global context guidance ·
Sliding weighted enhancement · Comprehensive feature fusion · 3D
convolution

1 Introduction

Salient Object Detection (SOD) mimics the human visual perception system to
capture the most attractive parts of an image, and is widely applied in the pre-
processing stages of visual tasks such as image editing, AR, VR, and autonomous
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Fig. 1. The prediction results are more accurate than the predictions of other state-
of-the-art networks in the field, such as GCPANet [9] and EDN [7].

driving. The popularity of SOD owes to the exceptional feature extraction capa-
bilities of Convolutional Neural Networks (CNNs) in computer vision, marking a
significant shift from traditional handcrafted feature extraction [1] to advanced
feature representation based on encoder-decoder architectures [2]. Many CNN-
based models [3,4] have significantly improved SOD performance through the
collaborative work of high-level and low-level features. High-level features have a
lower resolution but are rich in semantic information, making them ideal for gen-
erating coarse saliency maps. In contrast, low-level features offer larger spatial
scales and finer details, crucial for reconstructing object structures. Unfortu-
nately, the dilution of high-level features in the top-down transmission process
and the large amount of noise in low-level features have prompted many stud-
ies to solve this issue by introducing global features. Some studies [5–7] utilize
attention mechanisms to focus the global context on critical areas within high-
level features. Other studies [8–11] integrate global context into various stages
of the decoder, aiming to enhance the coherence of object prediction. Although
these two strategies significantly improve, there remains room for enhancing the
prediction integrity for irregular-scale objects in complex scenes, as shown in
Fig. 1. Therefore, to enhance the semantics and minimize errors, we identify two
main issues that need to be addressed: (1) Most previous works generate global
context through simple spatial compression and nonlinear activation of deep fea-
tures in the encoder, overlooking the fundamental differences between high-level
features and global context within the network; (2) While global context guides
the fusion of multi-level features by scene understanding of the overall image,
simply combining semantic information, detail information, and global context is
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suboptimal. This way fails to consider the interference of complex backgrounds
and utilize the potential of global guidance in restoring object integrity.

To redefine the role of global context within networks, we propose a novel
network called the Global-guided Weighted Enhancement Network (GWENet),
comprising three key components and one enhancement technique. To address
the first issue, we design a Global Perception Module (GPM) that focuses on
learning the correspondence of each pixel to extract global context, which is then
applied in the decoding stage through Global Guidance Flows (GGFs). Accord-
ing to EDN [7], further downsampling of the existing CNN backbone network can
extract semantics and locate objects more effectively. For this purpose, we design
a Deep Semantic Feature Extractor (DSFE) positioned before GPM, which lays
the foundation for capturing global context by mining the correlations among
feature channels. To enhance learning object integrity from a global view, we
construct a Comprehensive Feature Enhancement Module (CFEM) to gradually
aggregate multi-level features from the top-down. CFEM comprises two sub-
modules: an Adaptive Feature Interaction Fusion Module (AFIFM) and a Scale
Diversity Integration Module (SDIM), which enable the model to enrich feature
diversity while extracting valuable complementary information. To address the
second issue, the currently common practice involves element-wise addition, mul-
tiplication, or concatenation of global context with multi-level features, which
is intuitive but not optimal. Therefore, we propose a more stable and efficient
enhancement technique, namely a learnable weighted operator. We utilize the
global attention guidance generated by GPM to perform sliding weighting on the
appearance details and body region maps, which imparts low-level features with
semantics and effectively prevents the dilution of high-level features. Further-
more, at the end of the feature aggregation stage in the CFEM module, we
employ 3D convolution to capture more accurate and prosperous inter-feature
correspondence, thereby enhancing the comprehensive feature fusion. As the
visualization results in Fig. 1 show, our GWENet primarily employs global slid-
ing weighted technique, complemented by comprehensive feature fusion, to max-
imize shape integrity and minimize background interference, as displayed with
objects like tennis rackets and bamboo poles.

To sum up, our contributions are as follows:

– We explore the global context from a new perspective to restore object
integrity learning, and propose a global sliding weighted enhancement tech-
nique to effectively address issues such as dilution and noise instead of previ-
ous improved high-level features acting as the global context to locate salient
objects, which is expected to provide a new idea for SOD.

– We propose a novel Global-guided Weighted Enhancement Network for accu-
rate salient object detection, which introduces three key components: the
Global Perception Module (GPM), the Deep Semantic Feature Extractor
(DSFE), and the Comprehensive Feature Enhancement Module (CFEM),
where CFEM comprises the Adaptive Feature Interaction Fusion Module
(AFIFM) and the Scale Diversity Integration Module (SDIM).
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– Compared with the state-of-the-art methods on five challenging datasets, the
proposed GWENet achieves the best performance in quantitative and quali-
tative evaluations.

2 Related Work

2.1 Methods Based on Global Context Guidance

In recent years, global context learning plays a vital role in enhancing the per-
formance of SOD. Wei et al. [10] introduce the Side-out Aggregation Module to
enhance the receptive field of the entire network, enabling it to capture more
comprehensive information while avoiding the omission of crucial information.
Zhao et al. [6] add a global average pooling layer at the end of the encoder to
obtain global context, resulting in complete segmentation outcomes. Wu et al.
[7] propose an extreme downsampling block to effectively capture global con-
text, thereby achieving accurate salient object localization. To better address
the semantic dilution problem of high-level features, Chen et al. [9] design a
global context flow module to generate global context information for different
decoding stages. Liu et al. [11] utilize the existing semantic segmentation module
PPM [4] to capture global guiding information, compensating for the gradual
dilution from the top-down.

2.2 Methods Based on Multi-level Feature Fusion

Most multi-level feature fusion methods adopt the principle of feature comple-
mentarity [12], that is, combining global structures with local detail information
to aggregate multi-scale information. Wu et al. [8] develop a cascaded feedback
decoder to fuse multi-level features through multiple iterations, narrowing the
feature differences between different layers. Zhou et al. [3] design a two-stream
feature decoder for details and structures to capture complementary informa-
tion. Pang et al. [13] propose a mutual learning aggregation strategy, fusing only
adjacent layer features to enhance the representational capability of different
resolution features. To obtain richer scale information, Ma et al. [14] introduce
atrous convolution in the feature fusion module, aimed at enhancing valuable
information and suppressing noise. Zhuge et al. [15] believe that the rich recep-
tive field of convolution kernels can further help the network capture features
of different scales, hence a diversity aggregation module is designed to extract
feature diversity.

3 Method

3.1 Overview of GCWNet

As shown in Fig. 2, our proposed GWENet employs a U-shaped network architec-
ture based on the encoder-decoder. The encoder utilizes the VGG16 network as
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Fig. 2. Illustration of the overall network architecture of GWENet.

its backbone to extract initial features. Following prior studies [4,10], we remove
the last pooling and fully connected layers for end-to-end saliency prediction.
The network input is images with a resolution of [224 × 224] pixels. Given that
VGG comprises four pooling layers, the subsequent output scales are [112 × 112],
[56 × 56], [28 × 28], and [14 × 14], respectively. For simplicity, we denote these
five stages as a set V = {VE1, VE2, VE3, VE4, VE5}.

Next, we further downsample the network through the Deep Semantic Fea-
ture Extractor (DSFE) to fully extract high-level features rich in semantic and
localization information. Thereafter, the high-level features are passed to the
Global Perception Module (GPM) to obtain a global view of the image by learn-
ing the relationship among pixels and act on the comprehensive feature enhance-
ment module (CFEM) at each decoding stage through the Global Gudance Flow
(GFFs). Then, we enhance multi-level feature aggregation with the Adaptive
Feature Interaction Fusion Module (AFIFM) and capture multi-scale informa-
tion using the Scale Diversity Integration Module (SDIM) under the guidance of
the global context. Finally, we use 3D convolution to integrate features within
the CFEM and output a robust prediction map.

3.2 Deep Semantic Feature Extractor

Wu et al. [7] indicates that further downsampling the network can capture a
broader field of view to enhance high-level features, which play a crucial role
in scene understanding and object localization [5,10,13]. To this end, we design
the Deep Semantic Feature Extractor (DSFE) at the end of the encoder to fully
extract high-level semantics. First, we adopt max pooling to downsample the
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feature maps to 7×7, obtaining feature denoted as Fdown ∈ RN×C×H×W (C, H,
W are the channel number, height, and width):

Fdown = Conv3×3 (MaxPool (VE5)) (1)

where MaxPool(·) means 2 times max pooling downsampling. Conv3×3(·) rep-
resents a 3×3 convolution followed by batch normalization and ReLU layers.

Thereafter, inspired by the self-attention [17], three 1×1 convolution lay-
ers are deployed to get three feature maps, namely FQ ∈ RN×C×H×W ,
FK ∈ RN×C×H×W , and FV ∈ RN× C×H×W . After reshaping FQ, FV and
FK to RN×HW×C . Then we reshape the correlation strength map among pixels
FS ∈ RN×HW×C to RN×C×H×W , and the above process is computed as:

FS = Softmax
(
FQFT

K

)
FV + Fdown (2)

where T means transpose, and Softmax(·) represents the softmax layer for fea-
ture normalization.

Inspired by the Squeeze-and-Excitation [18], three 3 × 3 convolution layers
are deployed to enhance global dependencies among channels. This process is
calculated by

FD6 = Conv3×3
3

(
Conv3×3

2

(
Conv3×3

1 (FS)
)))

+ FS (3)

where Conv3×3
1 (·) ∈ RC→C/2, Conv3×3

2 (·) ∈ RC/2→C/2, and Conv3×3
3 (·) ∈

RC/2→ C. FD6 ∈ RN×C×H×W represents the deep high-level semantics that
are the final output of DSFE.

Finally, we conduct max pooling to highlight salient regions and average
pooling to suppress background on the FD6, which captures ‘pure’ deep semantics
FPDS (“PDS” in Fig. 2) applied for top-down.

3.3 Global Perception Module

In the above, we have discussed that existing SOD methods often generate
global features via simple compression and nonlinear activation of high-level
features but overlook the fundamental differences between the two. Therefore,
we design the GPM to capture the global context based on DSFE, enhancing
object integrity learning.

We first model FD6 in pixel-level corresponding relationship to determine
salient region. A location with a high correlation suggests a higher likelihood of
being a salient region. Specifically, We pass FD6 through two 1×1 convolutional
layers followed by matrix multiplication to obtain the affinity matrix map AD6 ∈
RN×HW×HW :

AD6 = Conv1×1
1 (FD6) ⊗ Conv1×1

2 (FD6)
T (4)

where Conv1×1(·) is the 1 × 1 convolution, ⊗ represents matrix multiplication.
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Next, To further get the global correlation of each pixel about spatial location,
we apply max pooling on the affinity matrix AD6 by row to obtain an affinity
matrix Amax

D6 ∈ RN×HW×1, then normalize and reshape it into affinity matrix
A′

D6 ∈ RN×1×HW :

A′
D6 = Softmax (Maxpool (AD6)) (5)

Fig. 3. The effectiveness of GPM. (a) Input images. (b) Ground Truth. (c) Results of
our method w/o GPM. (d) Results of our method. We can see that without the GPM,
the proposed method will suffer from semantic dilution, interference from non-salient
objects, and inaccurate localization of objects.

where MaxPool(·) is the max pooling along the row. Similarly, we repeat Eq. (5)
for A′

D6 to obtain the global affinity vector A′′
D6 ∈ RN×1×1.

Thereafter, We transform the affinity vector A′′
D6 into an affinity weight map

Aw
D6 ∈ RN× 1×1×1 by unsqueeze operation, then we combine the affinity weight

map Aw
D6 and deep high-level semantic FD6 in an element-wise multiplication

manner, thereby getting the correlation feature map Cw
D6 ∈ RN× C×H×W with

a high position relationship.

Cw
D6 = Aw

D6 � ρ (FD6) (6)

where � is element-wise multiplication, ρ(·) represents L2 normalized function.
Finally, We sum Cw

D6 along the width and height dimensions to get RN×C ,
and then convert to RN×C×1×1 by two unsqueeze operations. After that, we can
get the global context Aw

G ∈ RN×C×1×1 in final feature aggregation.
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By applying GPM, we learn a global correspondence for each pixel to learn a
global understanding of the entire image. Figure 3 shows some examples. We can
see that the proposed model without GPM is easily disturbed by background
noise, e.g., the tennis racket and spider legs in Fig. 3(c). In contrast, the pro-
posed GPM effectively prevents semantic dilution and accurately locates salient
regions.

Fig. 4. The architecture of the Adaptive Feature Interactive Fusion Module (AFIFM).

3.4 Comprehensive Feature Enhancement Module

Recent work [8,11] has shown that fusing features from different levels can effec-
tively preserve detail information and capture semantics. For this purpose, we
propose the CFEM to better merge multi-level features. We first pass the ini-
tial and deep features to the AFIFM, which address the resolution differences
between semantics and details under the guidance of global context. Thereafter,
features are passed to the SDIM for extracting multi-scale and diverse features.
Finally, 3D convolution is used to integrate complementary and multi-scale fea-
tures.

Adaptive Feature Interactive Fusion Module. As shown in Fig. 4, we
construct the AFIFM to address feature misalignment and noise interference
in the feature fusion process. Suppose that FEj

h ∈ RN×C×H×W represents
the deep feature, FEj

i ∈ RN× C×H×1 (j=2,3,4,5) represents the initial fea-
ture (j denotes the decoding layer). We first apply 1×1 convolutional layer
for Aw

G ∈ RN×C×1×1 followed by L2 normalization to obtain global attention
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guidance map Gnorm ∈ RN×C×1×1. Then, the proposed global sliding weighted
technique is used to enhance FEj

h and FEj
i , making them fully considering the

corresponding relationship between each pixel and global attention map Gnorm

to enhance the recognition of salient regions and suppress irrelevant background.
We can get weight features FEj

wh ∈ RN×C×H×W and FEj
wi ∈ RN×C×H×W in a

residual connection manner, which can be represented as:
⎧
⎨

⎩

FEj
wh = ConvGnorm

(
FEj

h

)
� FEj

h + FEj
h

FEj
wi = ConvGnorm

(
FEj

i

)
� FEj

i + FEj
i

(7)

where ConvGnorm

(·) denotes the convolution with Gnorm as the convolution
kernel. It is worth noting that the global sliding weighted technique is not used
without the GPM module. With the enhancement of the sliding weighted tech-
nique, the model can recognize non-salient objects (billboard in the 3rd column)
is illustrated in Fig. 3. Furthermore, unlike [6,7,22], we considered the distinct
contributions to different stages, that is, transmitting the global context to each
decoding stage through GGFs.

Next, inspired by PFSNet [14], we utilize dynamic weights to fuse seman-
tic and detail features. We first use FEj

wh to generate the channel weights

FEj
ch = σ

(
G

(
Conv1×1

1

(
FEj

wh

)))
for FEj

wi , and FEj
wi to generate the spatial

weights FEj
si = σ

(
M

(
Conv1×1

1

(
FEj

wh

))
for FEj

wh . Both work on opposite
branches, which can help us accumulate more salient features at each level. The
specific process can be described as follows:

CCAT = Concat
((

FEj
wi � FEj

ch

)
,
(
FEj

wh � FEj
si

))
(8)

where CCAT ∈ RN×C×H×W represnts comprehensive feature map, σ(·) rep-
resents the Sigmoid activation function. G(·) is global average pooling operation,
and M(·) means that the channel dimensions are averaged. Concat is concate-
nation operation.

Finally, we use channel and spatial attention [9] to further refine the two
branch features, which can be expressed as follows.

Fc = CCAT +
(
FEj

ai � CA(CCAT )
)

+
(
FEj

ah � SA(CCAT )
)

(9)

where CA denotes channel attention, and SA is spatial attention. FEj
ai = FEj

wi �
FEj

ch , FEj
ah = FEj

wh �FEj
si . The final result Fc ∈ RN×C×H×W is obtained by fusing

all the information through the residual connection.

Scale Diversity Integrated Module. As shown in Fig. 5, we construct SDIM
for efficient multi-scale learning. Inspired by the UNet architecture [16], we design
SDIM with a U-shaped structure, where the resolution of the deepest feature is
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Fig. 5. Illustration of Scale Diversity Integrated Module(SDIM) for enriching feature
space.

1/4 of the input size. This is mainly because features of adjacent layers are simi-
lar, and integrating features over a wide range can introduce noise [13,14]. Specif-
ically, we first take the CCAT as input of the SDIM to extract and aggregate
multi-scale context information U(CCAT ). U(·) represents UNet architecture.
At the last, we finish with a residual connection:

Fu = U(CCAT ) + CCAT (10)

Due to the challenge of predicting irregular-scale objects in complex scenes,
we combine convolutional kernels of different shapes at the bottleneck layer of
SDIM to capture features of various object sizes. The DFE is shown in Fig. 5. We
employ ordinary convolution (or), atrous convolution [19] (at), and asymmetric
convolution [7] (as) to enrich the diversity of the feature space. Furthermore,
according to [7,11,21,22], inter-branch interaction helps enhance the multi-scale
representation ability. Therefore, we achieve information communication and
sharing between the three convolution branches.

⎧
⎨

⎩

Forc = Conv3×3
or (Fb)

Fasc = Conv3×3
as (Fb) + Forc

Fatc = Conv3×3
at (Fb) + Fasc

(11)

Finally, we concatenate multi-scale features, like

DCAT = Conv1×1 (Concat (Forc , Fasc , Fatc )) (12)

In this way, SDIM effectively learns irregular-scale features by integrating
features of different scales. Notably, SDIM adopts average pooling for down-
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sampling and bilinear interpolation for upsampling, thereby achieving efficient
transmission.

Final Aggregation. Due to the high efficiency of 3D convolution in process-
ing video sequences [20], we employ 3D convolution to integrate comprehensive
features CCAT with multi-scale features DCAT , aiming to enhance model per-
formance and reduce redundancy. This process can be represented as

FA = δ
(
Conv3D2×3×3(Concat(CCAT,DCAT ))

)
(13)

where Conv3D2×3×3 represents a 3D convolution with a kernel size of 2× 3× 3,
δ is RELU activation function. DCAT and CCAT ∈ RN× C×1×H×W . As you
know, our network can further enhance the integrity of salient objects.

3.5 Supervision Strategy

Inspired by F3Net [8], we adopt a hybrid loss scheme, utilizing BCE and IoU to
train our model, where BCE is used to maintain smooth gradients of the loss
function, and IoU is employed to draw more attention to object structures. BCE
loss is defined as:

Lbce = −
H∑

x=1

W∑

y=1

[G(x, y) log(P (x, y)) + (1 − G(x, y)) log(1 − P (x, y))] (14)

where G (x, y) and P (x, y) are the ground truth label and the predicted saliency
label at the location (x, y), respectively. H and W are the height and width of
the images, respectively. Meanwhile, Liou is defined as:

Liou = 1 −
∑H

x=1

∑W
y=1 P (x, y)G(x, y)

∑H
x=1

∑W
y=1[P (x, y) + G(x, y) − P (x, y)G(x, y)]

(15)

4 Experiments

4.1 Experimental Settings

Implementation Details. We use ImageNet to pre-train the backbone network
and then use the DUTS-TR to fine-turn the proposed GWENet. Input images
are resized to [352 × 352], [320 × 320], [288 × 288], [256 × 256], and [224 × 224]
for data augmentation. Adam optimizer [7,16] is used to train our network and
its hyper parameters are set to default (initial learning rate lr=1e-4, betas=(0.9,
0.999), eps=1e-8, weight decay=0). The warm-up learning rate strategy is also
adopted. The batch size is set to 8 (VGG16) and 32 (ResNet50). We run all
experiments on the publicly available Pytorch 1.10.0 platform. The network is
trained for 50 epochs. Inference for a testing image takes around 30 fps on a single
GPU. The code can be available at https://github.com/Gi-gigi/GWENet.
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Testing Datasets and Evaluation Criteria. We evaluate all the models on
five popular datasets: ECSSD, PASCAL-S, DUT-OMRON, DUTS, HKU-IS. We
adopt the Mean Absolute Error (M), the mean E-measure (Em

ξ ), the weighted
F-measure (Fω

β ), and the S-measure (Sm) to assess SOD models [15]. We plot
Precision-Recall (PR) curves and F-measure curves to show overall performance.

4.2 Comparison with the State-of-the-Arts

We compare the proposed GWENet with twelve recent state-of-the-art models,
including CPD [2], EGNet [12], ITSD [3], GateNet [5], MINet [13], F3Net [8],
U2Net [16], GCPANet [9], PFSNet [14], PA-KRN [10], ICON [15], EDN [7],
and CTD-L [22]. For a fair comparison, the saliency maps are either provided
by the authors or obtained by running their released codes under the default
parameters.

Table 1. Comparison of GWENet with state-of-the-art SOD methods. The best per-
formance in each column is highlighted in bold.

Summary ECSSD PASCAL-S DUTS-TE HKU-IS OMRON

Method ParamsSm Em
ξ Fω

β M Sm Em
ξ Fω

β M Sm Em
ξ Fω

β M Sm Em
ξ Fω

β M Sm Em
ξ Fω

β M

VGG16-Based Methods

CPD 29.23 .91 .938 .895 .04 .845 .882 .796 .072 .867 .902 .8 .043 .904 .94 .879 .033 .818 .845 .715 .057

EGNet 108.07 .919 .936 .892 .041 .848 .877 .788 .077 .878 .898 .797 .044 .91 .938 .875 .035 .836 .853 .728 .057

ITSD 17.08 .914 .937 .897 .04 .856 .891 .811 .068 .877 .905 .814 .042 .906 .938 .881 .035 .829 .853 .734 .063

GateNet 100.02 .917 .932 .886 .041 .857 .886 .797 .068 .87 .893 .786 .045 .91 .934 .872 .036 .821 .84 .703 .061

MINet 47.56 .919 .943 .905 .036 .854 .893 .808 .064 .875 .907 .813 .039 .912 .944 .889 .031 .822 .846 .718 .057

ICON 19.17 .919 .946 .905 .036 .861 .902 .82 .064 .878 .915 .822 .043 .915 .95 .895 .032 .833 .865 .743 .065

EDN 21.83 .928 .951 .915 .034 .86 .896 .815 .066 .883 .912 .822 .041 .921 .95 .9 .029 .838 .863 .746 .057

Ours-V 18.47 .928 .950 .915 .031 .87 .905 .833 .059 .895 .926 .848 .035 .922 .951 .906 .027 .84 .865 .756 .056

ResNet50-Based Methods

CPD 47.85 .918 .942 .898 .037 .848 .882 .794 .071 .869 .898 .795 .043 .905 .938 .875 .034 .825 .847 .719 .056

EGNet 111.69 .925 .943 .903 .037 .852 .881 .795 .074 .887 .907 .815 .039 .918 .944 .887 .031 .841 .857 .738 .053

ITSD 26.47 .925 .947 .91 .034 .859 .894 .812 .066 .885 .913 .823 .041 .917 .947 .894 .031 .84 .865 .75 .061

GateNet 128.63 .92 .936 .894 .04 .858 .886 .797 .067 .885 .906 .809 .04 .915 .937 .88 .033 .838 .855 .729 .055

MINet 126.38 .925 .95 .911 .033 .856 .896 .809 .064 .884 .917 .825 .037 .919 .952 .897 .029 .833 .86 .738 .056

F3Net 25.54 .924 .948 .912 .033 .861 .898 .816 061 .888 .92 .835 .035 .917 .952 .9 .028 .838 .864 .747 .053

U2Net 46.21 .928 .924 .91 .033 .844 .841 .797 .074 .861 .886 .804 .044 .916 .948 .89 .031 .847 .871 .757 .054

GCPANet 67.06 .927 .920 .903 .036 .858 .846 .808 .063 .89 .89 .82 .038 .92 .949 .889 .031 .839 .860 .734 .057

PFSNet 31.18 .929 .927 .919 .031 .853 .855 .818 .062 .892 .902 .842 .036 .924 .956 .909 .026 .842 .874 .756 .055

PAKRN 141.06 .927 .924 .918 .032 .851 .857 .816 066 .9 .916 .86 .033 .923 .955 .909 .027 .853 .885 .779 .05

ICON 33.09 .929 .954 .918 .032 .861 .899 .818 .064 .888 .924 .836 .037 .92 .953 .902 .029 .844 .876 .761 .057

EDN 42.85 .927 .951 .918 .033 .865 .902 .827 .062 .892 .925 .844 .035 .924 .955 .908 .027 .849 .877 .77 .05

CTD-L 26.48 .921 .925 .913 .032 .868 .870 .825 .059 .891 .914 .849 .034 .922 .954 .905 .026 .845 .878 .776 .052

Ours-R 27.73 .931 .954 .919 .03 .872 .907 .835 .058 .901 .931 .863 .033 .926 .957 .91 .026 .851 .882 .781 .05

Quantitative Comparison. Table 1 reports the quantitative results on five
benchmark datasets using the backbone networks VGG16 and ResNet50 in
terms of S-measure, E-measure, weighted F-measure, and MAE. Obviously, the
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Fig. 6. Illustration of PR curves (1st row), F-measure curves (2nd row) on five datasets.

proposed GWENet outperforms other methods in both performance and effi-
ciency. Although GWENet reach a competitive or comparable level on individual
metrics, its overall performance emerged as the leader. In terms of the MAE met-
ric, ourGWENet achieves the lowest scores across all datasets, which demonstrates
that the GPM assists in enhancing the model to locate salient objects. Compared
with EDN [7] and GCPANet [9], the global sliding weighted technique can enhance
the capability to prevent semantic dilution and suppress background interference.
PR and F-Measure curves are shown in Fig. 6, respectively. GWENet performs
best overall on PR and F-Measure curves, which further demonstrates the effec-
tiveness of the proposed method based on the global context guidance.

Fig. 7. Qualitative comparison of our method with five SOTA methods: GCPANet
[9], PA-KRN [10], PFSNet [14], ICON [15], and EDN [7]. The proposed GWENet
produces more accurate localization and complete objects with fewer background noises
for various complex scenes.
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Qualitative Evaluation. The qualitative comparison is shown in Fig. 7. Our
GWENet generates more accurate and complete saliency maps than other meth-
ods for diverse challenging cases, e.g., Regular-scale objects in cluttered back-
grounds (1st row), Small-scale objects and multi-object scenes (2nd and 3rd
row), Large-scale objects (4th and 5th row). Besides, our model can highlight
salient regions more clearly and suppress background noise. All visualization
results demonstrate the accuracy and robustness of the proposed method.

4.3 Ablation Study

In this part, we conduct the ablation study to verify the effectiveness of the key
components and technique proposed in our model. All studies are conducted on
the ECSSD and PASCAL-S datasets, and VGG-16 is adopted as the backbone.

Table 2. Ablation study with different components combinations on ECSSD and
PASCAL-S dataset.

Summary ECSSD PASCAL-S

ID Methods Sm Em
ξ Fω

β M Sm Em
ξ Fω

β M

1 Ours .928 .95 .915 .031 .87 .905 .833 .059

2 w/o GPM .921 .943 .903 .036 .865 .899 .819 .065

3 w/o AFIFM .926 .944 .909 .035 .864 .897 .82 .064

4 w/o SDIM .924 .948 .912 .034 .862 .902 .822 .063

5 CFEM-add .925 .943 .907 .034 .864 .896 .82 .063

6 CFEM-multi .926 .945 .908 .034 .869 .903 .828 .061

7 CFEM-2D .925 .944 .909 .033 .868 .901 .826 .062

Effectiveness of Different Components. Table 2 shows that removing GPM
(ID:2) significantly declines network performance on two datasets, with a 16%
and 10% decrease in MAE, respectively. The effectiveness of GPM is exhaus-
tively demonstrated in Fig. 3. We observe further performance degradation after
separately removing AFIFM (ID:3) and SDIM (ID:4). Although the decline is
not as significant as in model (ID:2), their indispensability is evident, high-
lighting the contribution of feature fusion and multi-scale information to per-
formance improvement. As anticipated, integrating all components into the pro-
posed model (ID:1) achieves the best performance.

Effectiveness of 3D Convolution from CFEM. In this part, we verify the
effectiveness of 3D convolution in the CFEM module. Obviously, the performance
of conventional aggregation methods experiences a significant decline. Compared
to these models (ID:6 and ID:7), the model performance (ID:5) on the PASCAL-
S dataset is particularly notable, with M decreased by 6.8%, Fω

β by 1.6%, Em
ξ by
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0.9%, and Sm by 0.7%. These findings underscore that 3D convolution is more
efficient than 2D convolution in learning relative relationships among features.

5 Conclusion

We propose a novel Global-guided Weighted Enhancement Network, GWENet,
to detect irregular-scale objects in complex scenes by utilizing a global sliding
weighted enhancement technique. To effectively address issues such as semantic
dilution, noise interference, and feature misalignment, we construct the Deep
Semantic Feature Extractor (DSFE) to generate pure high-level semantics for
top-down, the Global Perception Module (GPM) to extract global context for
guidance from pixel-level correspondence, and the CFEM, employing 3D con-
volution to explore feature correlation. The three complement each other and
jointly enhance the object integrity. Comprehensive experiments on five bench-
marks demonstrate that GWENet achieves the new state-of-the-art for SOD.
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